Discriminative Sparse Representation for Hyperspectral Image Classification: A Semi-Supervised Perspective
نویسندگان
چکیده
Zhaohui Xue 1,*, Peijun Du 2,3,4, Hongjun Su 1 and Shaoguang Zhou 1 1 School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China; [email protected] (H.S.); [email protected] (S.Z.) 2 Key Laboratory for Satellite Mapping Technology and Applications of National Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing 210023, China; [email protected] 3 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China 4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing 210023, China * Correspondence: [email protected]
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملSemi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning
In this paper, we proposed a new semi-supervised multi-manifold learning method, called semisupervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturall...
متن کاملJoint sparse model-based discriminative K-SVD for hyperspectral image classification
Sparse representation classification (SRC) is being widely investigated on hyperspectral images (HSI). For SRC methods to achieve high classification performance, not only is the development of sparse representation models essential, the designing and learning of quality dictionaries also plays an important role. That is, a redundant dictionary with well-designated atoms is required in order to...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملNonlinear Semi-Supervised Hyperspectral Unmixing Via Semantic Spectral Representation
This paper proposes a new hyperspectral unmixing method for nonlinearly mixed hyperspectral data using a semantic representation in a semi-supervised fashion, assuming the availability of a spectral reference library. Existing semisupervised unmixing algorithms select members from an endmember library that are present at each of the pixels; most such methods assume a linear mixing model. Howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
 
دوره 9 شماره
صفحات -
تاریخ انتشار 2017